Categorias
Linux Notícias Open Source Software livre Tecnologia

Explorando o Hipervisor SEAPATH 1.0 na Automação de Subestações

Quando falamos sobre a modernizaçã e eficiência das infraestruturas críticas, como as elétricas, a tecnologia desempenha um papel fundamental. Neste contexto, o surge como uma inovação promissora. Desenvolvido pela Linux Foundation, este hipervisor de código aberto é projetado para otimizar a automatização de subestações, garantindo segurança e eficiência em tempo real. Mas, o que torna o SEAPATH tão especial para o setor energético? Vamos explorar isso mais a fundo.

Por que o SEAPATH .0 é um marco para o setor energético?

A digitalização das infraestruturas elétricas tem crescido exponencialmente, trazendo consigo a necessidade de soluções mais robustas e seguras. O SEAPATH 1.0 atende a essa demanda com uma arquitetura que permite a execução confiável de software crítico, essencial para a proteção, automatização e controle de redes elétricas. Sua compatibilidade com sistemas operacionais como Debian e Yocto Linux facilita a integração em diferentes ambientes, tornando-o uma solução versátil para o setor.

Segurança e eficiência operacional

Um dos principais destaques do SEAPATH 1.0 é seu foco em segurança e eficiência operacional. Desenvolvido com o apoio de empresas líderes no setor tecnológico e energético, como GE Vernova, ABB e Red Hat, este hipervisor já demonstrou sua capacidade de melhorar o desempenho das subestações e garantir a estabilidade do fornecimento de energia. Empresas como RTE, com o apoio de Savoir-faire Linux, já implementaram o SEAPATH 1.0, destacando suas vantagens em termos de segurança e robustez.

Implementação e perspectivas futuras

A implementação do SEAPATH 1.0 em ambientes de teste e produção já é uma realidade. A experiência da RTE na França é um exemplo de sucesso, apontando para um futuro onde mais empresas e operadores de redes elétricas adotarão essa tecnologia. O do SEAPATH 1.0 é visto como um avanço significativo na virtualização de infraestruturas críticas, prometendo uma revolução na forma como as subestações elétricas operam e são gerenciadas.

Conclusão

O Hipervisor SEAPATH 1.0 representa uma evolução importante na automatização de subestações, oferecendo uma solução segura, eficiente e em tempo real para o setor energético. Sua capacidade de integrar-se a diferentes sistemas operacionais e a validação por grandes empresas do setor são testemunhos de seu potencial. À medida que mais organizações adotarem o SEAPATH 1.0, podemos esperar uma transformação significativa na gestão e operação das infraestruturas elétricas, caminhando para um futuro mais digitalizado e eficiente.

Fonte: LinuxAdictos.

Categorias
Debian Fedora Linux Linux Mint Notícias Open Source openSUSE Software livre Tutorial Ubuntu

Inkscape 1.0 Release Candidate lançado – Confira as novidades

E preparando terreno para a versão , foi lançado o .0 Release Candidate. Confira as novidades e veja como instalar no Linux.

Categorias
Debian Fedora Linux Linux Mint Notícias Open Source openSUSE Software livre Ubuntu

Eclipse Theia 1.0 lançado como a primeira versão dessa plataforma

A Eclipse Foundation lançou a versã do , Eclipse Theia . Confira as novidades desse e veja como instalar no Linux.

Categorias
Linux Notícias Open Source Red Hat Software livre

Kubeflow 1.0 – um caminho de código aberto para Machine Learning empresarial do princípio ao fim

O deve abordar uma esmagadora variedade de funcionalidades ao redor da construção, capacitação, serviço e gestão de padrões. Fazê-lo de forma consistente, portátil e escalável é difícil. O framework de Kubernetes é muito apropriado para abordar estes problemas, se tornando uma excelente base para implementar cargas de trabalho de Machine Learning. O do projeto foi uma jornada para cumprir essa promessa e estamos entusiasmados por termos alcançado seu primeiro marco importante: o Kubeflow .

Kubeflow .0 – um de código aberto para Machine Learning do ao

Sempre pronta para trabalhar com uma comunidade forte e diversificada, a IBM ingressou na Kubeflow desde o início. No ano passado, a IBM setornou a maior colaboradora de código para Kubeflow, depois do Google. Mais de 20 IBMistas contribuíram com código para o Kubeflow, com mais de 500 confirmações e 900 mil linhas de código.

Nosso foco tem sido contribuir para os principais componentes do Kubeflow, incluindo Katib (otimização de hiperparâmetros), KFServing (modelo de serviço), Fairing (SDK), Pipelines de Kubeflow, kfctl (plano de controle), Manifestos (configurações), TF- Operador e PyTorch-Operator (treinamento do modelo). Além disso, estamos executando projetos internos e testes de desempenho, além de avaliar ajustes de produção para clientes comerciais, enquanto trabalhamos nos requisitos de determinados projetos nos quais investimos (por exemplo, Containerd, OpenShift e Power Systems). Como parte do 1.0, muitos componentes Kubeflow em torno dos princípios básicos de construção, treinamento, implementação e administração amadureceram e estão prontos para implementações no nível de produção. Para mais detalhes, siga o blog da comunidade Kubeflow 1.0

O Kubeflow fornece instruções para implementá-lo no Google Cloud Platform (GCP) e Amazon Web Services (AWS). Além disso, temos instruções para executar o Kubeflow no IBM Cloud, o Kubeflow no OpenShift e o Kubeflow no Power. Estamos trabalhando com clientes empresariais em telecomunicações, bancos, agricultura e outros domínios para permitir uma plataforma de Machine Learning do início ao fim, usando o Kubeflow e outras tecnologias de código aberto. Algumas dessas histórias de clientes serão compartilhadas no próximo IBM THINK em maio.

Listados abaixo estão alguns dos destaques do trabalho em que colaboramos com a comunidade Kubeflow e que levam a um Kubeflow 1.0 de nível empresarial.

Kubeflow Operator para implementação e administração de Kubeflow

Um dos nossos esforços colaborativos mais recentes foi o desenvolvimento do Kubeflow Operator, que ajuda a implementar, monitorar e gerenciar o ciclo de vida do Kubeflow. Foi criado usando o Operator Framework, que é um conjunto de ferramentas de código aberto usadas para desenvolver, testar, empacotar e gerenciar o ciclo de vida dos operadores. O Kubeflow Operator está agora disponível no GitHub de Kubeflow. Além disso, criamos os metadados e o código para que o operador seja publicado oficialmente no OperatorHub. Isso nos ajudará a aproveitar o ecossistema e as ferramentas ao redor do OpenShift, principalmente o Operator Lifecycle Manager.

Para começar a usar o Kubeflow Operator, siga o tutorial no IBM Developer.

TF Operator, PyTorch Operator, Katib para treinamento distribuído e otimização de hiperparâmetros

O treinamento de padrões distribuídos no Kubernetes para Tensorflow, PyTorch, etc. foi a base de Kubeflow. Contribuímos com os SDKs do Python para o Tensorflow Operator e o PyTorch Operator, que permitem executar o treinamento em seus notebooks. Além disso, o Katib é um componente do Kubeflow que permite o ajuste de hiperparâmetros e a busca por arquitetura neural. Somos um dos principais colaboradores da Katib e lideramos o design e a implementação de várias funções, como o compilador de métricas, o modelo de teste, o serviço de sugestões, a API da Katib e muito mais. Também publicamos documentação específica sobre vários recursos do Katib com os detalhes “nos bastidores” e como começar com o Katib.

KFServing para inferência e gestão de padrões

A IBM ajudou a fundar o KFServing, trabalhando em conjunto com Google, Bloomberg, Seldon e outros. A equipe ajudou com muitas características, incluindo contribuições para servidores SKLearn e PyTorch, armazenamento, SDK, atualizações de KNative, integração de pipelines, infraestrutura de teste E2E e outras características importantes, incluindo a co-liderança do desenho de log cargas. Para este ano, um dos principais objetivos é levar os recursos de inteligência artificial confiável para o KFServing, como detecção de viés, detecção de adversários e explicabilidade usando o conjunto de projetos de inteligência artificial confiáveis da IBM.

Você pode usar o KFServing em 5 minutos e implementar uma versão padrão de um modelo usando uma especificação simples. Para cenários de inferência mais avançados, siga nossa sessão do KubeCon.

Kubeflow Pipelines para orquestar workflows de Machine Learning 

Nosso compromisso com Kubeflow Pipelines começou com a contribuição dos componentes de pipeline e amostras para a Spark, o portfólio Watson (Watson Machine Learning e Watson OpenScale), KFServing, Katib, AI Fairness 360 e o toolkit Adversarial Robustness 360.

Além disso, a IBM ajudou a facilitar a execução de Pipelines com Containerd (em vez de apenas o Docker), trabalhando com a comunidade Argo. A IBM contribuiu para uma ampla variedade de roadmaps e discussões de desenho para os Pipelines de Kubeflow e TFX, autenticação/autorização local e muito mais. Atualmente, a IBM está conduzindo um estudo comparativo dos pipelines de Kubeflow e Tekton e um protótipo inicial do código e compilador KFP-Tekton YAML. Estamos executando o MLOps Sig na CD Foundation para impulsioná-lo.

Também publicamos uma amostra de pipeline que inclui Katib, TFJob e KFserving.

Fairing para proporcionar um SDK de Kubeflow multicloud consistente

Usando o Kubeflow Fairing e adicionando algumas linhas de código, você pode executar o trabalho de treinamento do Machine Learning localmente ou na nuvem, diretamente do código Python ou do Jupyter Notebook. A IBM tem contribuído bastante para o Kubeflow Fairing, incluindo pacotes Python para Fairinggerenciamento e manutenção de versões, sua integração com o KFServing, aprimoramento do CI / CD do Fairing e outras correções ou aprimoramentos de funções.

Junte-se a nós para criar uma plataforma de Machine Learning de nível empresarial

Aqui estão algumas maneiras pelas quais você pode participar:

  • Para contribuir e criar uma plataforma de Machine Learning de nível empresarial do início ao fim no OpenShift e Kubernetes, junte-se à comunidade Kubeflow e compartilhe qualquer pergunta, comentário ou sugestão;
  • Se você deseja receber ajuda para implementar e gerenciar o Kubeflow em sua plataforma Kubernetes local, OpenShift ou no IBM Cloud, conecte-se conosco;
  • Consulte o OpenDataHub se você estiver interessado em outros projetos de código aberto relacionados com dados e inteligência artificial, como Kafka, Hive, Hue e Spark, e como levá-los juntos nativamente para a nuvem.

Graças aos parceiros da IBM no projeto Kubeflow, a saber: Jin Chi He, Tommy Li, Hou Gang Liu, Weiqiang Zhuang, Guang Ya Liu, Christian Yaadiu, Christian Kadner, Andrew Butler, Jane Man e muitos outros por contribuir com vários aspectos do projeto, interna e externamente.

Além disso, parabéns aos nossos colegas da Red Hat por ajudar o Kubeflow no OpenShift a ser fortalecido e pronto para a produção de casos de uso de negócios. E, por último, mas não menos importante, obrigado aos membros da comunidade colaborativa que inclui Google, Arrikto, Cisco, Bloomberg, Microsoft e muitos outros por trazer isso para o primeiro marco importante: Kubeflow 1.0.

Escrito por Animesh Singh – Arquiteto-chefe da plataforma de código aberto de AI e IBM Data. Ele é o líder do projeto Kubeflow da IBM.

O que está sendo falado no blog

Veja mais artigos publicados neste dia…

Categorias
Debian Fedora Linux Linux Mint Notícias Open Source openSUSE Software livre Ubuntu

Shortwave 1.0 lançado – Confira as novidades e veja como instalar

E foi lançado , a versão desse importante aplicativo. Confira as novidades e veja como instalar ou atualizar no Linux.

Categorias
Debian Linux Linux Mint Notícias Open Source Software livre Ubuntu

Syncthing 1.0 – Finalmente saiu a primeira versão estável

O projeto anunciou a versã do sistema Syncthing . Conheça melhor o software, confira as novidades e veja como instalar no Linux.

Categorias
Arch Fedora Linux Notícias Open Source Software livre Ubuntu

Mir 1.0 lançado – Confira as novidades e instale no Ubuntu e Arch

A Canonical lançou recentemente , versão desse . Confira os detalhes desse e veja como em seu sistema.

Categorias
Arch Debian Fedora Gentoo Linux Linux Mint Manjaro Notícias Open Source openSUSE Software livre Ubuntu

Flatpak 1.0 lançado – Confira as novidades e veja como atualizar ou instalar

Foi lançado com diversas melhorias e novos recursos. Confira as novidades e veja como ou .

Sair da versão mobile